If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2+4x-2=0
a = 9; b = 4; c = -2;
Δ = b2-4ac
Δ = 42-4·9·(-2)
Δ = 88
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{88}=\sqrt{4*22}=\sqrt{4}*\sqrt{22}=2\sqrt{22}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{22}}{2*9}=\frac{-4-2\sqrt{22}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{22}}{2*9}=\frac{-4+2\sqrt{22}}{18} $
| x(3x+5)=182 | | x(3x+5=182) | | 9*x^2+7*x-5=0 | | 49x^2-39x=10 | | 5/8x-3=-1/2+7/4x+1/8x | | 3x/5-15=0 | | c2=121 | | 2a-5(5+6a)=-249 | | 24/36=6/w | | 4/15=12/x | | f/2=3/12 | | 6/p=2/7 | | j-2+7=-12 | | 2x+10-3x+4=12 | | 3.8=0.5(8n-4.2) | | -14=-6+4u | | -20r=-20 | | 5y-18+y=180 | | 3(x+4)=54 | | 3x-9=-7x+33 | | 5y^2-12y+16=0 | | 2x²-14/5=0 | | 3x-9=-7+33 | | 7-5m=3m-17 | | 3/4+2/5=11/10x-3 | | 7+5m=3m-17 | | 101t-583=580 | | 7x+1x=192 | | 950x+1,000x=7,800 | | 113h+1250=1667 | | x/150=0.06 | | 10r+12=6+8r |